Cloning and expression of genes encoding heat shock proteins in Liriomyza trifolii and comparison with two congener leafminer species
نویسندگان
چکیده
The polyphagous agromyzid fly, Liriomyza trifolii, is a significant and important insect pest of ornamental and vegetable crops worldwide. The adaptation of insects to different environments is facilitated by heat shock proteins (HSPs), which play an important role in acclimation to thermal stress. In this study, we cloned and characterized five HSP-encoding genes of L. trifolii (Lthsp20, Lthsp40, Lthsp60, Lthsp70, and Lthsp90) and monitored their expression under different thermal stresses using real-time quantitative PCR. Pupae of L. trifolii were exposed to 19 different temperatures ranging from -20 to 45°C. The results revealed that Lthsp20, Lthsp40, Lthsp70 and Lthsp90 were significantly upregulated in response to both heat and cold stress, while Lthsp60 was induced only by heat temperatures. The temperatures of the onset (Ton) and maximal (Tmax) expression of the five Lthsps were also determined and compared with published Ton and Tmax values of homologous genes in L. sativae and L. huidobrensis. Although L. trifolii occurs primarily in southern China, it has cold tolerance comparable with the other two Liriomyza species. Based on the heat shock proteins expression patterns, L. trifolii has the capacity to tolerate extreme temperatures and the potential to disseminate to northern regions of China.
منابع مشابه
Selection and validation of reference genes for quantitative real-time PCR analysis under different experimental conditions in the leafminer Liriomyza trifolii (Diptera: Agromyzidae)
Liriomyza trifolii is a highly-invasive leafmining insect that causes significant damage to vegetables and horticultural crops worldwide. Relatively few studies have quantified gene expression in L. trifolii using real-time quantitative PCR (RT-qPCR), which is a reliable and sensitive technique for measuring gene expression. RT-qPCR requires the selection of reference genes to normalize gene ex...
متن کاملSpecies displacements are common to two invasive species of leafminer fly in China, Japan, and the United States.
Under field conditions, species displacements have occurred in different directions between the same invasive species of leafminers (Diptera: Agromyzidae). Liriomyza sativae (Blanchard) was displaced by L. trifolii (Burgess) in the western United States, with evidence suggesting that lower insecticide susceptibility of L. trifolii is a factor. However, in Japan, the opposite has occurred, as L....
متن کاملImpact of Insecticides on Parasitoids of the Leafminer, Liriomyza trifolii, in Pepper in South Texas
Liriomyza leafminers (Diptera: Agromyzidae) are cosmopolitan, polyphagous pests of horticultural plants and many are resistant to insecticides. Producers in South Texas rely on insecticides as the primary management tool for leafminers, and several compounds are available. The objective of this study is to address the efficacy of these compounds for controlling Liriomyza while minimizing their ...
متن کاملLocal Crop Planting Systems Enhance Insecticide-Mediated Displacement of Two Invasive Leafminer Fly
Liriomyza sativae and L. trifolii are highly invasive leafminer pests of vegetable crops that have invaded southern China in recent years. Liriomyza sativae was the first of these species to invade China, but it is now being displaced by L. trifolii. The rate and extent of this displacement vary across southern China. In Hainan, monocultures of highly valuable cowpea are planted and treated ext...
متن کاملIdentification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses
AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...
متن کامل